WHAT REALLY MATTERS IN GRAZING MANAGEMENT

Jim Gerrish American GrazingLands Services LLC Patterson, Idaho

Why Management-intensive Grazing?

Cows "intensively graze" by nature, only people can "intensively manage"

For most cool-season grass-legume mixtures Phase 2 is between about 5 and 15 inches height

Principle # 2: Avoid grazing a pasture to Phase 1 !

The role of plant diversity:

Greater likelihood of something grean and growing more days of the year Interlaying of different canopies and leaf types increases efficiency of solar capture More solar energy captured more days of

Percent leaf removal	Rhodes grass (single clipping)	Rhodes grass	Smooth bromegrass	Kentucky bluegrass
		(re	epeated clipping)
₁ 0	0	0	0	0
20	0	0	0	0
30	0	0	0	0
40	0	0	0	0
50	2	8	13	38
60	50	80	36	54
70	78	97	76	77
80	100	100	81	91
90	100	100	100	100

Residual and Rest

- In a 180 day growing season....
 - If grazing to Phase 2 residual requires 30 day rest period
- >Then there are 6 harvests annually
- >If 1000 lb forage grazed in each cycle, each acre yields 6000 lb of grazed forage

Residual and Rest

- In a 180 day growing season....
 - If grazing to Phase 1 residual requires 45 day rest period.....
 - Then there are only 4 harvests annually
 - If 1200 lb forage grazed in each cycle, each acre yields <u>4800</u> lb of grazed forage

What are riparian areas and why are they important?

- Critical water source for humans, livestock, and wildlife
- Good indicator of overall environmental quality
- Valuable economic resource in many areas

What defines riparian health?

- Functional ecosystem processes
- Solar energy flow
- · Effective water cycle
- Dynamic nutrient cycle
- Biodiversity at all trophic levels
- Clean water flowing to next reach

N fi	cation in r	nixed star	nds
Species	<u>N fixed</u> 1 st year	<u>(lb/acre)</u> old stand	N from fixation
Alfalfa	70-80	120-230	60 - 94 %
Red Clover	10-90	130-250	40 - 96 %
Birdsfoot Trefoil	30-60	80-150	40 - 94 %
White Clover	10-100	20-240 West 8	35 - 100% & Mallorino, 1996

Effect of protein level on daily N excretion rate

Protein content	10%	15%	20%	
Cow weight	1200	1200	1200	lb
Intake rate	2.6%	2.6%	2.6%	% of liveweight
Daily consumption	31.2	31.2	31.2	lb/hd/day
Daily protein consumption	3.12	4.68	6.24	lb/hd/day
Daily nitrogen consumption	0.50	0.75	1.00	lb/hd/day
Daily nitrogen excretion	0.47	0.71	0.95	lb/hd/day

 * Fecal N level remains near constant, excess N is excreted as urine

Effect of protein rate	level c	on daily	/ N exc	cretion
Protein content	10%	15%	20%	
Cow weight	1200	1200	1200	lb
Intake rate	2.6%	2.6%	2.6%	% of liveweight
Daily consumption	31.2	31.2	31.2	lb/hd/day
Daily protein consumption	3.12	4.68	6.24	lb/hd/day
Daily nitrogen consumption	0.50	0.75	1.00	lb/hd/day
Daily nitrogen excretion	0.47	0.71	0.95	lb/hd/day
Daily fecal N output	0.24	0.24	0.24	lb/hd/day
Daily urine N output	0.24	0.47	0.71	lb/hd/day

* Urine N is nearly all readily available on a daily basis

Effect of stock density on daily available N return to the soil Stock density 1200 4800 24000 48000 96000 600 Protein content Ib of available N applied daily 0.1 9.5 10% 0.2 0.9 4.7 19.0 9.5 37.9 15% 0.2 0.5 1.9 19.0 20% 0.4 0.7 2.8 14.2 28.5 56.9

Effe	ct of s	tock	den	sitv o	on da	ilv
avai	lable	N ret	urn t	to the	e soil	
Stock density	600	1200	4800	24000	48000	9600
Protein content		Ib of a	vailable N	applied da	ily	
10%	0.1	0.2	0.9	4.7	9.5	19.
15%	0.2	0.5	1.9	9.5	19.0	37.
20%	0.4	0.7	2.8	14.2	28.5	56.
Management ≻ 600 lb/. >1200 lb/	requireme A = contin (A = contin	nts for thuous gra	nese sto ze 2 acr	ck densi e/cow	ties:	
F 1200 ID/		iuous yra		CICOW		
≻4800 lb/	A = rotatio	onal graz	e 10 da	y grazing	period	
≻24000 ll	o/A=rotatio	onal graz	e 3 day	graze pe	eriod	
≻48000 II	o/A=rotatio	onal graz	e 1 dav	araze pe	riod	

Manure Distribu	ition
Rotation Frequency	Years to get 1 pile / sq. yard
Continuous	27
14 day	7-8
4 day	4-5
1 day	1-2

Some useful definitions

• **Stocking rate**: The number of animals or animal liveweight assigned to a grazing unit on a seasonal basis.

Stocking rate affects all these factors:

- ➢Forage production
- ➤Forage quality
- ➤Species composition
- ≻Animal performance
- Soil compaction
- ➢ Profitability

Some useful definitions

- **Stocking rate**: The number of animals or animal live weight assigned to a grazing unit on a seasonal basis.
- **Carrying capacity**: The stocking rate that provides a target level of performance while maintaining the integrity of the resource base.

Carrying capacity of pasture is determined by four factors Carrying Capacity = Forage Production X Seasonal Utilization Rate Utilization Rate Grazing Season Daily Intake X Length of the Grazing Season

Some useful definitions

- **Stocking rate**: The number of animals or animal live weight assigned to a grazing unit on a seasonal basis.
- Stock density: The number of animals or animal live weight assigned to a specific pasture area at a specific point in time

Stocking rate and stock density with continuous grazing ۰**Ś** Ten head on ten ٠Ś acres Stocking rate = 1 hd/acre **•** With continuous grazing: stock density = Ś stocking rate 1 ٩Ŵ Both are still 1200 lb/acre

Pasture subdivision and stock density

 With pasture subdivision stocking rate may not change but stock density does !
 Stock density is 10 hd/2.5 acres or 4800 lb/acre

What is the appropriate stock density?

Len	Intake target Utilization target gth of grazing period	2.5% 50% 1.00
Available Forage	Potential Stock Density	
forage/acre)	(Ib liveweight/acre	
1000	20000	>
1500	30000	
2000	40000	
2500	50000	
3000	60000	
3500	70000	
4000	80000	>
4500	90000	
5000	100000	
5500	110000	
6000	120000	

WI sto	hat is th ock den	e appropri sity?	ate
		Intake target	2.5%
		Utilization target	80%
_	Ler	ngth of grazing period	1.00
	Available Forage	Potential Stock Density	
	forage/acre)	(lb liveweight/acre	
	1000	32000	>
	1500	48000	
	2000	64000	
	2500	80000	
	3000	96000	
_	3500	112000	
_	4000	128000	>
_	4500	144000	
_	5000	160000	
_	5500	176000	
	6000	192000	

nat is the appropriate ock density?				
	Intake target Utilization target	2.2%		
Len	gth of grazing period	1.00		
Available Forage	Potential Stock Density			
forage/acre)	(Ib liveweight/acre			
1000	36364			
1500	54545			
2000	72727			
2500	90909			
3000	109091			
3500	127273			
4000	145455	>		
4500	163636			
5000	181818			
5500	200000			
6000	218182			

